U.S. Department of Energy

Lawrence
Livermore
National
Laboratory

N=""

Preprint
UCRL-JC-142172

Are Multiple Runs Better
Than One?

E. Cantu-Paz

This article was submitted to
Genetic and Evolutionary Computation Conference 2001, San
Francisco, CA, July 7-11, 2001

January 4, 2001

Approved for public release; further dissemination unlimited



This document was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor the University of California nor
any of their employees, makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or the University
of California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or the University of California, and shall not be
used for advertising or product endorsement purposes.



Are Multiple Runs Better than One?

Erick Cantu-Paz
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
7000 East Avenue, Livermore, CA 94550
cantupaz@llnl.gov

Abstract

This paper investigates whether it is better
to use a certain constant amount of compu-
tational resources in a single run with a large
population, or in multiple runs with smaller
populations. The paper presents the primary
tradeoffs involved in this problem and iden-
tifies the conditions under which there is an
advantage to use multiple small runs. The
paper uses an existing model that relates the
quality of the solutions reached by a GA with
its population size. The results suggest that
in most cases a single run with the largest
population possible reaches a better solution
than multiple isolated runs. The findings are
validated with experiments on functions of
varying difficulty.

1 INTRODUCTION

Suppose that we are given a fixed amount of func-
tion evaluations to solve a particular problem with a
genetic algorithm (GA). How would we divide these
evaluations to maximize the expected quality of the
solution? One possibility would be use all the evalua-
tions in one run of the GA with the largest population
size possible. This may seem a plausible approach,
because it is well known that the solution quality im-
proves with larger populations. However, we could
also use a smaller population and run the GA multi-
ple times. Although the expected quality per run is
expected to decrease, we would have more chances of
reaching a good solution.

This paper examines the tradeoff between increasing
the likelihood of success of individual runs vs. using
more trials to reach the goal. The objective of this
study is to determine what configuration reaches so-
lutions with the highest quality. The scope of the
study is limited to additively decomposable functions
of bounded difficulty, because it is based on a model of

solution quality that considers this type of functions.

It would be desirable to find that the best strategy is
to use multiple small runs, because each could be exe-
cuted concurrently on a different processor of a paral-
lel computer resulting in a reduction of waiting time.
Executing multiple isolated GAs in different proces-
sors is a bounding case of island-model parallel GAs,
and has been studied in that context before (Tanese,
1989; Canti-Paz & Goldberg, 1997). Tanese found ex-
perimentally that in some problems, the best overall
solution found in any generation by multiple popula-
tions was at least as good as that found by a single
run. Similarly, multiple populations showed an advan-
tage when she compared the best individual in the final
generation. However, when she compared the average
population quality at the end of the experiments, the
single runs seemed beneficial.

Other studies also suggest that multiple isolated runs
can be advantageous. For example, Shonkwiler (1993)
used a Markov chain model to argue that multiple
small independent GAs would reach the global solu-
tion sooner (with fewer function evaluations) than a
single GA with a large population. He suggested that
superlinear parallel speedups are possible if the pop-
ulations are executed concurrently on the nodes of a
parallel computer.

Closer to our interests, Nakano, Davidor, and Yamada
(1994) proved that under the constraint of constant
computation cost there is an optimal population size
that maximizes the probability of reaching a solution
of a predetermined quality, and there is an optimal
number of runs associated to this optimal size. Our
approach is similar to theirs (although it has a different
form), but we focus on certain types of functions and
extend the analysis to identify the cases when multiple
runs are beneficial based on certain characteristics of
the problems that describe their difficulty.

More recently, Fuchs (1999) and Fernandez et al.
(2000) studied multiple isolated runs of genetic pro-
gramming. They found that in some cases it is ad-
vantageous to use multiple small runs, but that it is



important to balance the number of runs and their
sizes to achieve good results.

Although there is some evidence that suggests that at
least in some problems multiple runs are preferable, it
is not entirely clear under what conditions this holds.
For example, what does “better” mean? As we saw
above, Tanese found conflicting answers depending on
the comparison criterion.! Also, if multiple popula-
tions are indeed preferable, why are more practitioners
not using them? We would expect that practitioners
as “rational consumers” of ideas that have the poten-
tial to save time or reach better solutions would adopt
multiple small runs. This paper will argue that the
conditions where multiple runs are preferable are of
limited practical value.

It is also interesting to consider the extreme cases when
multiple runs of size one are better (in whatever sense)
than a single GA, because multiple runs with a single
individual are equivalent to random search. Although,
it is known than in some problems, random search
must be better than GAs (e.g., (Wolpert & Macready,
1997)) it is not clear on what problems this occurs.
This paper sheds some light on this topic.

The models of this paper are based on the gambler’s
ruin (GR) model of Harik et al. (1999), which is sum-
marized in the next section. Section 3 extends the GR
model to calculate the expected quality of the best
of r independent runs, and shows the circumstances
under which it is advantageous to use multiple runs.
Section 4 presents the results of experiments that val-
idate the accuracy of the models. Section 5 relaxes
the assumption of constant total cost and briefly dis-
cusses multiple short runs. Finally, section 6 presents
a summary and the conclusions of this study.

2 THE GAMBLER’S RUIN MODEL

It is common in GA practice to encode the variables of
the problem as binary strings. Although alphabets of
higher cardinalities may be used, without loss of gen-
erality we restrict the discussion to the binary case. A
schema is a string over the extended alphabet {0, 1, x},
and represents the class of individuals that have 0 or 1
in exactly the same positions as the schema. The * is
a “don’t care” symbol that matches anything. For ex-
ample, in a domain that uses 10-bit strings, the class of
individuals that start with 1 and have a 0 in the second
position are represented by the schema 10Q¥¥¥ k%

The number k of fixed positions in a schema is its or-
der. The fixed positions of a schema define a partition
of the search space into mutually exclusive subsets or

!This paper compares algorithms based on the average
fitness of solutions at the end of a run, and the results are
consistent with Tanese’s experiments.

equivalence classes. Some schemata represent classes
of individuals with a higher average fitness than oth-
ers, and some schemata actually match portions of the
global solution. It is possible that a schema has a high
average fitness, but does not match the global opti-
mum. Low-order highly-fit schemata are sometimes
called building blocks (BBs) (Goldberg, 1989). In this
paper we refer to the lowest-order schema that consis-
tently leads to the global optimum as the correct BB.
In this view, the correct BB must (1) match the global
optimum and (2) have the highest average fitness of all
the schemata in the same partition. We label all other
schemata in the partition as incorrect.

Harik et al. (1999) modeled selection in GAs as a bi-
ased random walk to obtain a model of the quality of
the solution of a GA. Their work is based on a previous
population sizing model by Goldberg, Deb, and Clark
(1992). The model concentrates on only one partition
of order k, and it assumes that decisions are indepen-
dent across partitions. The number of copies of the
correct BB in a population of size n is represented
by the position, z, of a particle on a one-dimensional
space, as depicted in figure 1. Absorbing barriers at
z = 0 and = n bound the space, and represent
ultimate convergence to the wrong and to the right
solutions, respectively. Once the particle reaches the
barriers it cannot escape. The initial position of the
particle, g, is the number of copies of the correct BB
in the initial population.

At each step of the random walk there is a probability,
p, of obtaining one additional copy of the correct BB.
This probability depends on the particular problem
that the GA is facing, and it represents the probabil-
ity of deciding correctly in a one-to-one competition
between individuals that represent the best and the
second best schemata of the partition. For functions
composed by adding several uniformly-scaled subfunc-
tions, p was computed by Goldberg, Deb, and Clark
(1992) in their study of population sizing as

where ® denotes the cumulative distribution function
(CDF) of a normal distribution with a mean of zero
and a standard distribution of one, d is the difference
of the fitness contribution of the best and the second
best schemata in the partition, m' = m — 1, m is the
number of subfunctions, and o7, is the average RMS
variance of k-th order partitions.

A well-known result about random walks is the prob-
ability that a particle will eventually be captured by
the absorbing barrier at = n (Feller, 1966):

- (1)
= (3)

Py (zo,n) = (2)



x=0 Xo X=n

Figure 1: The bounded one-dimensional space of the
gambler’s ruin problem.

where ¢ = 1 — p. We measure the quality of the so-
lutions as the number of partitions that converged to
the correct BB at the end of a run. Therefore, the
expected probability of success is

n
Py(n) =Y Py(xo) - Puy(xo,n), (3)
zo=0

where Py(z9) = (;’0) (2)% (1= )""" is the prob-
ability of having exactly xo correct BBs in the initial
random population. In most cases, we may approx-
imate the probability of success as Py (5z,n), which
simplifies the calculations significantly, but in this pa-
per we will use equation 3 to have more accurate re-
sults at small population sizes. Note that when n =1
the approximation would return a value lower than the
correct 2%

There are a number of assumptions in the gambler’s
ruin model. First, there is no explicit notion of gen-
erations: the model considers that decisions in a GA
occur one at a time until all the n individuals in its
population converge to the same value. The model also
assumes conservatively that all competitions occur be-
tween pairs of strings with the best and the second
best schemata in a partition, and that the probability
of deciding correctly remains constant during the run.
Furthermore, the boundaries of the random walk are
absorbing; this means that once a partition contains n
copies of the correct BB it cannot lose one, and like-
wise, when the correct BB disappears from a partition
there is no way of recovering it. This makes the im-
plicit assumption that mutation and crossover do not
create or destroy significant numbers of BBs: the only
source of BBs is the random initialization of the pop-
ulation. Although, the GR model makes all these as-
sumptions and simplifications, previous experimental
results with additively decomposable functions of vary-
ing difficulty suggest that is it an accurate predictor of
the solution quality (Harik et al., 1999). The models
presented in the next section are largely based on the
GR model, and therefore they inherit the assumptions,
limitations, and applicability of the GR model.

3 MULTIPLE SMALL RUNS

Recall that we measure the quality of the solution
as the number of partitions that converge correctly,

and we denote it as (). The probability that one
partition converges correctly is given by the gam-
bler’s ruin model, Ps(n). For convenience, we will use
Py = P;(n1) to denote the probability that a partition
converges correctly in one run with population size nq
and P, = Ps(n,) for the probability that a partition
converges correctly in one of the multiple runs with a
population size n,..

Under the assumption that the m partitions are inde-
pendent, the quality has a binomial distribution with
parameters m and P.. Therefore, the expected solu-
tion quality of a single run is E(Q) = mP,. Of course,
some runs will reach better solutions than others. If
we execute r runs, we may write the qualities of the
solutions that each reaches as

Ql:r S QZ:T S S Qr:r-

These are the order statistics of the solution quality of
the r runs. Q1. denotes the quality of the worst solu-
tion, and @,., denotes the quality of the best solution
found. We are interested in the expected value of Q,..,.,
which can be calculated as (Arnold, Balakrishnan, &
Nagaraja, 1992)

—

m—

E(Qr:r) = (1 - F(m)r)a (4)
0

1=

where F(z) = P(Q < @) = 37 (7)PI(1-P)™ 7 is
the CDF of the solution quality. Unfortunately, there
is no closed-form expression for the mean values of the
maximal order statistics of binomial distributions, but
their values can be found in tables or calculated nu-
merically. However, there are approximations for the
maximal order statistics of the standard normal distri-
bution (Harter, 1970). To take advantage of this, we
can approximate the binomial distribution of the qual-
ity with a Gaussian, and normalize the number of cor-
rect partitions by subtracting the mean and dividing
over the standard deviation: Z;., = Qur—mPr g

vmP.(1-P,)

expected value of the highest normalized order statis-
tic of r samples from a standard Gaussian is denoted
as E(Z,.;.) = py.r. Therefore, we can approximate the
expected value of the best quality in r runs as

E(Qr.r) ® mP. + pp.p/mPr(1 — P,.). (5)

Noting that pu,., can be approximated accurately as
Jr—— v4v2In r, we can see that the expected value
of the best quality increases very slowly as more runs
are used. Thus, if there were no restrictions on the to-
tal computations, adding more runs to an experiment
would result in a marginally higher expected solution
quality.

However, if the total cost is constrained, equation 5
shows a fundamental tradeoff: pu,., grows as r in-
creases, but P, decreases because the population size



per run must decrease. This tradeoff suggests that
there is an optimal number of runs and an associated
optimal population size that maximize the expected
quality. Unfortunately, even with the approximations
we made we cannot obtain a closed-form expression
for these optimal parameters, but with the model for
the quality over multiple runs in place, we can start
answering interesting questions. For example: Do mul-
tiple runs result in a higher quality than a single run
that uses the same total computational resources? If
so, what kinds of problems would benefit more?

The quality reached by multiple runs is better than
one run if the following inequality holds:

mPy. + 0. > mPy, (6)

where o, = /mP,(1 — P.). We can bound the stan-

dard deviation as o, = 0.5y/m to obtain an upper
bound on the quality of the multiple runs. Substitut-
ing this bound into the inequality above, dividing by
m, and rearranging we obtain

Hor:r

2ym

This equation shows an interesting relation: multiple
runs are more likely to be beneficial on short problems
where m is small, everything else being equal. This
is bad news for the case of multiple runs, because in-
teresting problems in practice may be very long. The
experiments in section 4 confirm that the advantage of
multiple runs decreases in long problems.

> P — P, (7)

The right side of the inequality above also shows that
for multiple runs to be advantageous, the difference
between the solution qualities must be small. This
may happen at very small population sizes, where the
quality is so poor that even in the single-run case it
is very small. This case is not very interesting, be-
cause normally we want to find solutions with high
quality. However, the difference is also small when the
quality does not improve much after a certain popula-
tion size. This is the case that Nakano, Davidor, and
Yamada (1994) examined, and it opens an interesting
possibility where multiple runs can be beneficial. The
optimum population size is probably near the point
where there is no further improvement. Using a larger
population would be a waste of resources, and using
multiple runs increases the chance of success.

3.1 MODELS OF CONVERGENCE TIME

We can write the total number of function evaluations
that are available as

T =rgn,, (8)

where g is the domain-dependent number of genera-
tions until the population converges to a unique value,

r is the number of runs, and n, is the population size
of each run.

In the remainder we assume that the generations un-
til convergence are constant. Therefore, to maintain
a fixed total cost, the population size of each of the
multiple runs must be n, = n;/r, where n; denotes
the population size that a single run would use.

Assuming that ¢ is constant may be an oversimplifi-
cation, as there is previous research that shows that
the convergence time depends on other factors such as
the population size and the selection intensity, I. For
example, Miihlenbein and Schlierkamp-Voosen (1993)
determined that under some conditions the genera-
tions until convergence are given by

g~ g@ (9)
If we used this model, the population size of each of the
multiple runs would have to be n, = ni/r?/? to keep
the total cost constant. Using this form of n, would
give an advantage to the multiple runs, because their
sizes (and the quality of their solutions) would not
decrease as much as with the constant g assumption.
In any case, the conclusions of the paper remain the
same regardless of the convergence time model we use.

3.2 RANDOM SEARCH

Using all the available computation time in one run
with the largest possible population is clearly one ex-
treme in the spectrum of possibilities that we are con-
sidering. The other extreme is to use as many runs
as possible with the smallest population size, which
is one individual. Multiple runs with one individual
are equivalent to random search, because there is no
evolution possible (remember that we are assuming no
mutation): the final result of each run is simply the
random individual created at the beginning.

The models above account for the two extreme cases.
When the population size is one, P, = 2%, because
only one term in equation 3 is different from zero. The
quality of the best solution found by 7 runs of size one

can be calculated with equation 4.2

To identify the problems where random search can find
better solutions we calculated the expected solution
quality using equation 4 varying the order of the BBs,
k, and the number of runs. The next section will ex-
plain in more detail how the functions used in these
calculations are defined; for now we only need to know
that k varied. Figure 2 displays the results and shows
the ratio of the quality obtained by random search over

2Taking Q.. = m[l — (1 — 5%)"] may seem tempting,

but it greatly overestimates the true quality. This calcula-
tion implicitly assumes that the final solution is formed by

correct BBs that may have been obtained in different runs.



Figure 2: Ratio of the quality of multiple runs of size
1 (random search) vs. a single run varying the order
of the BBs and the number of runs.

the quality found by a simple GA with a population
size of ny = r. The figure shows that random search
has a greater advantage as the order of the BBs in-
creases; in some cases the quality it is more than three
times higher than that found by the GA.

Taken literally, these results suggest that as the prob-
lems become harder (with longer BBs) random search
is a better alternative than a GA. However, this pecu-
liar behavior occurs only at extremely low population
sizes, where the solution quality is so low that it is of
no practical importance. When we increase the popu-
lation size (and the number of random search trials),
the GA comes ahead in the comparisons. Perhaps the
main importance of these results is that they show that
multiple runs can be beneficial in some cases, although
not very practical ones.

A consequence of these results is that if the multiple
random trials are executed in parallel and we calculate
the parallel speedup using the simple GA as the base
case, we would obtain superlinear speedups. Shon-
kwiler (1993) considered parallel execution and ob-
tained superlinear speedups on several test functions.
It is interesting to note that he used very small popu-
lation sizes in each run (= 2 individuals), and at least
two of his test functions are easily solvable by random
search.

4 EXPERIMENTS

This section describes experiments with several
linearly-decomposable functions of varying difficulty.
The test functions were chosen to correspond to the
ones used by Harik et al. (1999) in their study of pop-
ulation sizes, because they demonstrated that the GR
model, which forms the basis of the models of this

0.9 \'
L] * * ok ok * - 25
N
0.8
2 L
5 B . 100
00.7 - - -m R 11
0.6 - = - 1400
0 2 4 6 8

Figure 4: Ratio of the quality of multiple runs vs. a
single run varying the problem size.

paper, accurately predicts the quality reached by a
simple GA.

The GA in the experiments used pairwise tournament
selection without replacement, one-point crossover
with probability 1 (except where noted), and no mu-
tation. All the results shown in this section are the
average of 200 trials with each configuration.

The first function is a simple one-max or counting ones
function. It is defined as f; = Y .-, x;, where z; €
{0,1} are the individual bits of the chromosomes. This
is an easy function with BBs of order £ = 1. Our test
function had a length of m = 25 bits, and p can be
calculated to be 0.6135 using equation 1. In the first
set of experiments, we varied the population size n,
from 2 to 50 individuals. For each population size, we
varied the number of runs from 1 to 8 and recorded
the quality of the best solution found in any of the
runs, Q... Figure 3 shows the ratio of @,.,. over the
quality @; that a GA with a population size n; = rn,
reached. The experiments match the predictions well,
and in all cases the larger single runs reached solutions
of better quality than the multiple smaller runs.

To illustrate that multiple runs are more beneficial
when m is small, we conducted experiments varying
the length of the problem. The additional experiments
used the one-max function with m = 100 and m = 400
bits. The population size per run was fixed at n,. = 10,
and the number of runs varied from 1 to 8. The em-
pirical results plotted in figure 4 clearly show that as
the problems become longer, the single large runs find
better solutions than the multiple runs. Note that al-
though @, is increases with more runs, in general the
ratio @,..,./Q1 decreases.

The next two test functions are formed by adding fully-
deceptive trap functions (Deb & Goldberg, 1993). As
with the onemax, the values of the deceptive trap func-
tions depend on the number of bits set to one in their
k-bit input, u, but the fitness increases with more bits
set to zero until it reaches a local optimum. The global
maximum is at the opposite extreme where all the bits
in the partition are set to one. The order-k traps are



(a) Theory

(b) Experiments

Figure 3: Ratio of the quality of multiple runs vs. a single run for the onemax test function with m = 25 bits.

defined as

(10)

(k) _ Ek—u—1 ifu<k,
aec () {k it u= k.

The first deceptive test function is formed by concate-

nating m = 25 copies of fégl The fitness of a string
is calculated as E;’;l 522(“:«“), where us; denotes the
number of ones in the substring that starts at position
3i. For this function, p = 0.5573. Similarly, the second

deceptive test function is formed with m = 25 copies
of £ St 18 (ua;), and p = 0.552. Figures 5 and
6 show the ratio of the expected qualities in multiple
over single runs, Q,..,./Q1, varying the run size from 2
to 100 individuals and the number of runs from one to
eight. The experimental results are very close to the
predictions, except with very small population sizes.
The discrepancy is due to the inaccuracy of the GR
model for very small population sizes. Observe that in
most cases, the ratio is less than one, indicating that
a single large run reaches a solution with better qual-
ity than multiple small runs. The exceptions occur at
very small population sizes, where most of the time
random search performs even better.

We performed experiments to validate the results
about random search. Figure 7 shows the ratio of the
quality of the solutions found by the best of r random
trials and the solution obtained by a GA with a pop-
ulation size of r. For each value of k from 3 to 8, the
test functions were formed by concatenating m = 25
order-k trap functions. The predictions in figure 2 cor-
respond to the same test functions. The experiments
show the same general tendency as the predictions.

Figure 7: Ratio of the quality of multiple runs of size
1 (random search) vs. a single run varying the order
of the BBs and the number of runs.

5 MULTIPLE SHORT RUNS

Until now we have examined the solution quality after
the population converges to a unique solution, and no
further improvement is possible. However, in practice
it is common to stop a GA run as soon as it finds a solu-
tion that meets some quality criterion. The framework
introduced in this paper could be applied to this type
of experiments, if we had a model that predicted the
solution quality as a function of time: Ps(n,t). In any
generation (or any other suitable time step), the ex-
pected solution quality in one run would be mPs(n, t),
but again we would be interested in the expected value
of the best of the r runs, which can be found by sub-
stituting the appropriate distribution in equation 4.

There are some existing models of quality as a func-
tion of time, but they make the assumption that the
population size is sized such that the GA will reach



(a) Theory

(b) Experiments

Figure 5: Ratio of the quality of multiple runs vs. a single run for the order-3 deceptive test function.

(a) Theory

(b) Experiments

Figure 6: Ratio of the quality of multiple runs vs. a single run for the order-4 deceptive test function.

the global solution and that recombination of BBs is
perfect (Miihlenbein & Schlierkamp-Voosen, 1993). If
we adopt these assumptions, we could use the exist-
ing models, but we would not be able to reduce the
population size to respect the constraint of fixed cost.

Miihlenbein and Schlierkamp-Voosen (1993) derived
the following expression for the one-max function:

Pi(n,t) = % (1 +sin(%t)) , (11)

and Miller and Goldberg (1996) used it successfully
to predict the quality of deceptive functions. If we
abandon the cost constraint, we can study a different
facet of the question of multiple vs. single runs. We
can show that the best of multiple runs of the same
size (that is at least large enough to reach the global
optimum) reaches the solution faster than a single run
of the same size. Figure 8 shows the ratio of the num-

ber of generations until convergence (to the global) of
multiple runs over the number of generations of con-
vergence of a single run. The figure shows that the
time decreases as more runs are used, and the advan-
tage is more pronounced for shorter problems. If each
run is executed on a different processor of a parallel
machine, the time to reach the solution would be re-
duced. However, note that this scheme offers a very
small advantage, and it is probably not the best use of
multiple processors since we can obtain almost linear
speedups in other ways.

6 SUMMARY AND CONCLUSIONS

The dilemma of using one or multiple runs has in-
terested researchers for a long time, but it has re-
mained largely ignored despite multiple reports of the
advantage of multiple runs. The paper considered ad-



Figure 8: Ratio of the generations until convergence
of multiple over single runs. The total cost is not con-
stant.

ditively decomposable functions and extended an ex-
isting model to predict the solution quality based on
the number of runs and the population size of each.
Under the constraint of fixed total cost, this paper
showed that the expected solution reached by multi-
ple small runs is better than the solution reached by a
single large run only in very limited conditions of no
practical importance. In particular, multiple runs are
advantageous when the difference between the quali-
ties reached by single and multiple runs is small, which
occurs when the solution qualities are both very small
or when increasing the population size does not result
in a better solution. In addition, the paper identified
that the greatest advantage of multiple runs is on short
problems. The results are consistent with previous ex-
perimental and theoretical studies.

There are ample opportunities for future research.
Nakano et al. (1994) proved that under a constant
cost, constraint there is an optimal run size and count
that maximize the chances of success. The models in
this paper could be used to find this optimum numer-
ically, but it would be interesting to characterize it
analytically. Another extension is to consider differ-
ent classes of fitness functions and other evolutionary
algorithms. In addition, there is some existing exper-
imental evidence that suggests that if we change the
criterion used to compare algorithms the conclusions
might change. Although the conclusions remained the
same after our preliminary study comparing the qual-
ity of multiple runs over time, this case merits addi-
tional consideration.

The main contribution of this paper was to identify the
problem characteristics (length and BB order) where
it might be advantageous to use multiple runs. The
results suggest that for difficult problems our best bet
is to use a single run with the largest population pos-
sible. Small independent runs should be avoided.

References

Arnold, B., Balakrishnan, N., & Nagaraja, H. N. (1992).
A first course in order statistics. New York, NY:
John Wiley and Sons.

Canti-Paz, E., & Goldberg, D. E. (1997). Modeling ide-
alized bounding cases of parallel genetic algorithms.
In Koza, J. R. et al. (Eds.), Genetic Programming
97 (pp. 353-361). San Francisco, CA: Morgan Kauf-
mann Publishers.

Deb, K., & Goldberg, D. E. (1993). Analyzing deception
in trap functions. In Whitley, L. D. (Ed.), Founda-
tions of Genetic Algorithms 2 (pp. 93-108). San Ma-
teo, CA: Morgan Kaufmann.

Feller, W. (1966). An introduction to probability theory
and its applications (2nd ed.), Volume 1. New York,
NY: John Wiley and Sons.

Fernindez, F., Tomassini, M., Punch, W., & Sénchez,
J. M. (2000). Experimental study of isolated mul-
tipopulation genetic programming. In Whitley, D.
et al. (Eds.), Proceedings of the Genetic and Evo-
lutionary Computation Conference 2000 (pp. 536).
San Francisco, CA: Morgan Kaufmann Publishers.

Fuchs, M. (1999). Large populations are not always the
best choice in genetic programming. In Banzhaf, W.
et al. (Eds.), Proceedings of the Genetic and Evo-
lutionary Computation Conference 1999: Volume 2
(pp- 1033-1038). San Francisco, CA: Morgan Kauf-
mann Publishers.

Goldberg, D. E. (1989). Genetic algorithms in search,
optimization, and machine learning. Reading, MA:
Addison-Wesley.

Goldberg, D. E., Deb, K., & Clark, J. H. (1992). Ge-
netic algorithms, noise, and the sizing of popula-
tions. Compler Systems, 6, 333—-362.

Harik, G., Canti-Paz, E., Goldberg, D., & Miller, B. L.
(1999). The gambler’s ruin problem, genetic algo-
rithms, and the sizing of populations. Evolutionary
Computation, 7(3), 231-253.

Harter, H. L. (1970). Order statistics and their use in
testing and estimation. Washington, D.C.: U.S. Gov-
ernment Printing Office.

Miller, B. L., & Goldberg, D. E. (1996). Genetic algo-
rithms, selection schemes, and the varying effects of
noise. Evolutionary Computation, 4(2), 113-131.

Miihlenbein, H., & Schlierkamp-Voosen, D. (1993). Pre-
dictive models for the breeder genetic algorithm:
I. Continuous parameter optimization. Evolutionary
Computation, 1(1), 25-49.

Nakano, R., Davidor, Y., & Yamada, T. (1994). Optimal
population size under constant computation cost. In
Davidor, Y., Schwefel, H.-P., & Ménner, R. (Eds.),
Parallel Problem Solving fron Nature, PPSN III (pp.
130-138). Berlin: Springer-Verlag.

Shonkwiler, R. (1993). Parallel genetic algorithms. In
Forrest, S. (Ed.), Proceedings of the Fifth Interna-
tional Conference on Genetic Algorithms (pp. 199—
205). San Mateo, CA: Morgan Kaufmann.

Tanese, R. (1989). Distributed genetic algorithms. In
Schaffer, J. D. (Ed.), Proceedings of the Third In-
ternational Conference on Genetic Algorithms (pp.
434-439). San Mateo, CA: Morgan Kaufmann.

Wolpert, D., & Macready, W. (1997). No-free-lunch the-
orems for optimization. IEEE Transactions on Evo-
lutionary Computation, 1(1), 67-82.





